23、Java JUC源码分析 - 队列-ConcurrentLinkedQueue
之前看的队列大都是基于锁来实现阻塞,ConcurrentLinkedQueue采用wait-free算法来实现'无锁'的并发队列。wait-free算法之前没听说过,只听过lock-free,大牛解析说2中不同,具体看参考,有空后面翻译下。
ConcurrentLinkedQueue基于单向链表实现线程安全的无界队列。队列元素遵循FIFO。
看下队列内部结构:
/**
* Node节点,一个item一个next
*/
private static class Node<E> {
volatile E item;
volatile Node<E> next;
/**
* Constructs a new node. Uses relaxed write because item can
* only be seen after publication via casNext.
*/
Node(E item) {
UNSAFE.putObject(this, itemOffset, item);
}
boolean casItem(E cmp, E val) {
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long itemOffset;
private static final long nextOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class k = Node.class;
itemOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("item"));
nextOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("next"));
} catch (Exception e) {
throw new Error(e);
}
}
}
/**
* A node from which the first live (non-deleted) node (if any)
* can be reached in O(1) time.
* Invariants:
* - all live nodes are reachable from head via succ()
* - head != null
* - (tmp = head).next != tmp || tmp != head
* Non-invariants:
* - head.item may or may not be null.
* - it is permitted for tail to lag behind head, that is, for tail
* to not be reachable from head!
*/
private transient volatile Node<E> head;
/**
* A node from which the last node on list (that is, the unique
* node with node.next == null) can be reached in O(1) time.
* Invariants:
* - the last node is always reachable from tail via succ()
* - tail != null
* Non-invariants:
* - tail.item may or may not be null.
* - it is permitted for tail to lag behind head, that is, for tail
* to not be reachable from head!
* - tail.next may or may not be self-pointing to tail.
*/
private transient volatile Node<E> tail;
/**
* Creates a {@code ConcurrentLinkedQueue} that is initially empty.
*/
public ConcurrentLinkedQueue() {
head = tail = new Node<E>(null);
}
内部结构比较简单,一个head一个tail,构造函数初始化时指向一个null型Node节点,Node节点只有item和next
看下add和offer方法:
public boolean add(E e) {
return offer(e);
}
/** 无界队列,返回true */
public boolean offer(E e) {
checkNotNull(e); //非空校验
final Node<E> newNode = new Node<E>(e); //构造Node节点
for (Node<E> t = tail, p = t;;) { //for循环,p、t初始都指向tail节点
Node<E> q = p.next; //p节点的next
if (q == null) { //因为p节点指向tail,所以p的next为null表示q为最后一个节点
// p is last node
if (p.casNext(null, newNode)) { //将新的节点加入队列,如果不成功,说明有race,那就循环
// Successful CAS is the linearization point
// for e to become an element of this queue,
// and for newNode to become "live".
if (p != t) // hop two nodes at a time 这里应该是新加入节点经过不止一次循环才成功,导致原本p\t指向tail现在p\t不一致
casTail(t, newNode); // Failure is OK.不成功也无所谓,总会有其他成功的
return true; //最后都返回true
}
// Lost CAS race to another thread; re-read next
}
else if (p == q) //p的next指向自己,说明p节点被删除
// We have fallen off list. If tail is unchanged, it
// will also be off-list, in which case we need to
// jump to head, from which all live nodes are always
// reachable. Else the new tail is a better bet.
p = (t != (t = tail)) ? t : head; //看尾节点是否有变化,有变化就赋值p,重新循环,否则指向head
else
// Check for tail updates after two hops.
//这里就是q不为null,说明有节点加入了,如果tail没变化,那就向后推进,如果tail变了,那就指向tail重新循环
p = (p != t && t != (t = tail)) ? t : q;
}
}
offer方法大概这2步:1.找到待插入位置,2.casTail更新尾节点。因为使用的无锁,所以找到待插入位置的代码理解就比较困难,妈的,烦死。可以写demo,模拟多个线程插入race,断点打在for循环第一句,然后模拟不同race情况的代码走向。另外需要注意的是,更新尾节点,不是插入一个节点就更新一次。
poll方法:
public E poll() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
if (item != null && p.casItem(item, null)) { //先将item置null
// Successful CAS is the linearization point
// for item to be removed from this queue.
if (p != h) // hop two nodes at a time 上面cas成功,更新head
updateHead(h, ((q = p.next) != null) ? q : p);
return item;
}
else if ((q = p.next) == null) { //有race情况下存在next被删除的情况,更新head,返回null
updateHead(h, p);
return null;
}
else if (p == q) //这里就是指向自己了,节点被删除,一旦next指向自己,那肯定head是变了,需要重新for循环初始化
continue restartFromHead;
else
p = q;
}
}
}
/** 流程大致相同,不会设置item为null */
public E peek() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
if (item != null || (q = p.next) == null) {
updateHead(h, p);
return item;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}
/** 获取第一个item不为null */
Node<E> first() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
boolean hasItem = (p.item != null);
if (hasItem || (q = p.next) == null) {
updateHead(h, p);
return hasItem ? p : null;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}
public boolean isEmpty() {
return first() == null;
}
public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = succ(p))
if (p.item != null)
// Collection.size() spec says to max out
if (++count == Integer.MAX_VALUE)
break;
return count;
}
final void updateHead(Node<E> h, Node<E> p) {
if (h != p && casHead(h, p))
h.lazySetNext(h); //断开节点
}
poll方法updateHead,同casTail一样也不会立即更新。
其他的没有什么了。ConcurrentLinkedQueue需要注意的是peer和poll操作不会立即更新head\tail节点,而且更新cas也不会判断是否成功,即使失败了,也会有其他线程保证成功。
这个类当时看的时候,有点烦躁,因为是无锁的,所以考虑的场景就比较多,而且他的head\tail节点也立即更新,所以分析的时候,很容易,后来就看代码写demo分析代码走向才好点。还是需要多锻炼!